Merkmalerkennung am Beispiel SIFT Medieninformatik IL

Andreas Unterweger

Vertiefung Medieninformatik Studiengang ITS FH Salzburg

Wintersemester 2017/18

- Beschreiben markante Stellen eines Bildes (so genannte Schlüsselpunkte) und deren Umgebung
- Anwendungen (Auswahl):
 - Bildinhalte beschreiben
 - Objekte in Bildern (wieder-)finden
 - Bilder zusammenfügen
 - Ähnliche Bilder suchen
- Anforderungen:
 - Robustheit (Stabilität)
 - Kompaktheit (geringer Speicherbedarf)
 - Effizienz (geringer Zeitbedarf für Berechnung)

• Robustheitsgrade:

- Invarianz
- Quasi-Invarianz
- Toleranz
- Intoleranz
- Robustheitsdimensionen:
 - Translation
 - Rotation
 - Skalierung
 - Allgemeine affine Transformationen
 - Perspektivische Transformationen
 - Beleuchtung

- SIFT: Scale-invariant Feature Transform
- Bestandteile
 - Merkmalerkennung
 - Merkmalvergleich
- Quasi-invariant gegenüber
 - Translation
 - Rotation
 - Isotroper Skalierung
- Tolerant gegenüber
 - Perspektivischen Transformationen
 - Beleuchtung

- Ablauf Merkmalerkennung
 - Schlüsselpunktkandidatensuche
 - Schlüsselpunktkandidatenfilterung
 - Schlüsselpunktorientierungszuordnung
 - Schlüsselpunktdeskriptorerstellung
- Ablauf Merkmalvergleich (von erkannten Merkmalen zweier Bilder)
 - Merkmalübereinstimmungen finden
 - Falschzuordnungen erkennen und entfernen
 - Verifikation und Korrektur der Zuordnung (iterativ)
- Begriffsdefinitionen
 - Orientierung: Ausrichtung des Schlüsselpunktes (ermöglicht Neuanordnung zur Erreichung von Quasi-Rotationsinvarianz)
 - Deskriptor: Merkmalvektor mit Informationen zum Schlüsselpunkt

- Motivation: Skalierungsinvarianz durch Modellierung des Scale (zu deutsch etwa Maßstab) erreichen
- Idee: Ein Bild L(x, y) in einem Scale σ entspricht einem weichgezeichneten (mit G gefalteten) Ausgangsbild I(x, y) mit Weichzeichnungsstärke σ

$$L(x, y, \sigma) = I(x, y) * G(x, y, \sigma)$$

• G ist zweidimensionales Gauß-Filter mit variablem σ

$$G(x,y,\sigma) = \frac{1}{2\pi\sigma^2}e^{-\frac{x^2+y^2}{2\sigma^2}}$$

Einschub: Scale Space II

 $\sigma = 4$

 $\sigma = 16$

Quelle: Wikipedia contributors: Scale space. Wikipedia, The Free Encyclopedia http://en.wikipedia.org/wiki/Scale_space (18.7.2014), 2014

Andreas Unterweger (FH Salzburg)

Wintersemester 2017/18

7 / 20

(日) (同) (三) (三)

Schlüsselpunktkandidatensuche I

- Idee: Menschliche Wahrnehmung nachahmen
- Überlegung: Details/hochfrequente Anteile enthalten viel Information
- Umsetzung: Difference of Gaussians (DoG) D mit $k \in \mathbb{R}$:

 $D(x, y, k) = (G(x, y, k\sigma) - G(x, y, \sigma)) * I(x, y) = L(x, y, k\sigma) - L(x, y, \sigma)$

Quellen: http://en.wikipedia.org/wiki/File:Flowers_before_difference_of_gaussians.jpg; http://commons.wikimedia.org/wiki/File:Flowers_after_difference_of_gaussians_grayscale.jpg

Schlüsselpunktkandidatensuche II

. . .

Quelle: Lowe, D. G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

< 口 > < 同 >

Schlüsselpunktkandidatensuche III

$$\nabla^2 G = \frac{\partial^2 G}{\partial x^2} + \frac{\partial^2 G}{\partial y^2}$$

- $\rightarrow\,$ Approximation von LoG durch DoG
 - Scale Space erfüllt Diffusionsgleichung:

$$\sigma \nabla^2 G = \frac{\partial G}{\partial \sigma}$$

• Diskretisierung erlaubt vereinfachte numerische Ableitung:

$$ightarrow \sigma
abla^2 \mathcal{G} pprox rac{\mathcal{G}(x,y,k\sigma) - \mathcal{G}(x,y,\sigma)}{k\sigma - \sigma}
ightarrow \mathcal{D}(x,y,k) pprox (k-1)\sigma^2
abla^2 \mathcal{G}*\mathcal{I}(x,y)$$

Schlüsselpunktkandidatensuche IV

- Ohne Beweis: Scale-Space-Extrema (Minima und Maxima von *D*) sind gute Kandidaten für Schlüsselpunkte
- Scale-Invarianz als Nebeneffekt von LoG-Approximation
- Diskreter Suchraum erlaubt Extremafindung durch Vergleich eines Pixels von *D* mit dessen direkten Nachbarn in allen drei Dimensionen

Quelle: Lowe, D. G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

Schlüsselpunktkandidatenfilterung

- Kandidatenfilterungsprozess (ohne Details):
 - Kandidaten mit niedrigem Kontrast entfernen (anfällig für Rauschen)
 - Kandidaten entlang von Kanten entfernen (Lokalisation schwierig)
 - Interpolation rund um Extremum erlaubt exaktere Positionsermittlung

Adaptiert von http://commons.wikimedia.org/wiki/File:Sift_keypoints_filtering.jpg

Schlüsselpunktorientierungszuordnung I

- Beträge A und Winkel φ von Gradienten in Region um Schlüsselpunkt werden durch numerische Ableitung genähert
- Verwendung von L'(x, y) = L(x, y, σ_P) zur Beibehaltung von Scale-Invarianz (σ_P ist Scale von Schlüsselpunkt P)

$$A(x,y) \approx \sqrt{(L'(x+1,y) - L'(x-1,y))^2 + (L'(x,y+1) - L'(x,y-1))^2}$$
$$\varphi(x,y) \approx \arctan\left(\frac{L'(x,y+1) - L'(x,y-1)}{L'(x,y-1)}\right)$$

$$P(x,y) \approx \arctan\left(\frac{U(x+1,y)}{L'(x+1,y) - L'(x-1,y)}\right)$$

- Winkel-Histogramm mit 10-Grad-Unterteilung wird erstellt
- Gradientenbeträge fließen entfernungsgewichtet ein (ohne Details)
- Maximum ist dominante Orientierung \rightarrow Rotations(-quasi-)invarianz
- Für Werte bis 80% des Maximums: Zusätzliche Schlüsselpunkte

Schlüsselpunktorientierungszuordnung II

- Bisher bestimmte Schlüsselpunkteigenschaften:
 - Position (für Translationsinvarianz)
 - Scale (für Scale-Invarianz)
 - Orientierung (für Rotationsinvarianz)

Quelle: Lowe, D. G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

Schlüsselpunktdeskriptorerstellung

- 4 · 4 Orientierungshistogramme mit 45-Grad-Unterteilung aus Gradienten in 16 · 16-Region berechnen (vereinfachte Skizze)
- Vektor aus Histrogrammwerten erstellen und (vereinfacht) Vektor normalisieren (für Beleuchtungsinvarianz)

Quelle: Lowe, D. G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

Merkmalvergleich I

- Schlüsselpunkte und -deskriptoren in beiden Bildern berechnen
- Schlüsselpunktdeskriptoren vergleichen: Merkmalvektoren mit jeweils kleinsten euklidischen Abständen einander zuordnen (Ausnahme: Der zweitkleinste Abstand ist sehr nahe am kleinsten)

Quelle: Hess, R.: OpenSIFT - An Open-Source SIFT Library. http://robwhess.github.io/opensift/ (15.7.2014), 2014.

- Ausschluss von unpassenden Zuordnungen
 - Bestimmung der Pose (relative Position, Scale und Orientierung) jedes zugeordneten Schlüsselpunktes (mit Fehlertoleranz)
 - Gruppierung von Schlüsselpunkten, die in ihrer Pose übereinstimmen \rightarrow Höhere Wahrscheinlichkeit für korrekte Zuordnung (ohne Details)
 - Verwerfen von Zuordnungsgruppen mit weniger als drei Zuordnungen
 - \rightarrow Menge von Zuordnungsgruppen
- Geometrische Verifikation (für jede Zuordnungsgruppe)
 - Vereinfachte Annahme: Zuordnungen werden durch affine Transformation (mit Fehlertoleranz) hinreichend genau beschrieben
 - Unbekannte affine Transformationsmatrix aus linearem Gleichungssystem (mit Fehlertoleranz) bestimmen (ohne Details)
 - Zuordnungen mit zu großem Fehler verwerfen und Zuordnungsgruppe bei weniger als drei übrigen Zuordnungen verwerfen
 - Schritte bei Bedarf wiederholen (bis nichts mehr verworfen wird)

Merkmalvergleich III

 Abschließende Zuordnung: Aus verbleibenden Gruppen anhand der Anzahl der verbleibenden Zuordnungen pro Gruppe und der Größe des Fehlers die wahrscheinlichste Zuordnung auswählen (ohne Details)

Quelle: Lowe, D. G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

Nachteile von SIFT

- Nicht robust gegenüber einigen Verzerrungsarten
- Relativ langsam (trotz vieler Optimierungen)
- Patentrechtlich geschützt
- Alternative Verfahren (Auswahl):
 - SURF (Speeded Up Robust Features) ebenfalls geschützt
 - ORB (Oriented FAST¹ and Rotated BRIEF²)
 - BRISK (Binary Robust Invariant Scalable Keypoints)
 - FREAK (Fast Retina Keypoint)
 - HOG (Histogram of Oriented Gradients)
 - Diverse Eckendetektoren (z.B. FAST und Harris)

²Binary Robust Independent Elementary Features

¹Features from Accelerated Segment Test

Fragen?

Andreas Unterweger (FH Salzburg) Merkmalerkennung am Beispiel SIFT Wintersemester 2017/18 20 / 20

э