
The transcoder challenge: What is so difficult about
building a transcoder for watermarking?

Andreas Unterweger

Department of Computer Sciences
University of Salzburg

March 9, 2012

Andreas Unterweger (Univ. of Salzburg) Building a transcoder for watermarking March 9, 2012 1 / 18



What do we want?

A transcoder which

Replaces the values of selected syntax elements
Adapts the rest of the bit stream so it remains format compliant
Does not change anything else (structure/length preserving)

Big picture: An application which

Gets an H.264 bit stream and a watermark as input
Embeds the watermark using the transcoder
Provides an interface for quality measurement

Andreas Unterweger (Univ. of Salzburg) Building a transcoder for watermarking March 9, 2012 2 / 18



Term: Encoder

Entropy coding

Mode decision

Encapsulation

Param. coding
Transform

Quantization

Reordering/RLE

Prediction

0000
0001

Andreas Unterweger (Univ. of Salzburg) Building a transcoder for watermarking March 9, 2012 3 / 18



Term: Decoder

Entropy decoding

Format parsing

Param. decoding
Inv. transform

Inv. quantization

RLD/Reordering

0000
0001

Prediction

Reconstruction

Andreas Unterweger (Univ. of Salzburg) Building a transcoder for watermarking March 9, 2012 4 / 18



Term: Transcoder (classic)

Entropy decoding

Format parsing

Param. decoding
Inv. transform

Inv. quantization

RLD/Reordering

0000
0001

Prediction

Reconstruction

Entropy coding

Mode decision

Encapsulation

Param. coding
Transform

Quantization

Reordering/RLE

Prediction

0000
0001

Andreas Unterweger (Univ. of Salzburg) Building a transcoder for watermarking March 9, 2012 5 / 18



Term: Bit stream transcoder

Value modification and entropy re-encoding

The actual minimum of what is required for our purposes

Without entropy code adaptivity, it would be simple bit replacement

Entropy decoding

Format parsing

0000
0001

Entropy coding

Encapsulation

0000
0001

Andreas Unterweger (Univ. of Salzburg) Building a transcoder for watermarking March 9, 2012 6 / 18



What is wrong with classic transcoders?

They perform operations that we do not want/need

All pictures are completely decoded and re-encoded
The encoder expects to be configured
The encoder makes decisions of his own

They do not perform operations that we want/need

Original encoder decisions are not preserved (sometimes considered)
Encoder decisions cannot be influenced at the required level of detail

Changing them is hard

Few transcoders are open source
Those which are, bridge existing or modified decoders and encoders
Transcoders are built for full transcoding, not watermarking

Andreas Unterweger (Univ. of Salzburg) Building a transcoder for watermarking March 9, 2012 7 / 18



Is there no ready-to-use solution?

Standard transcoders are not built for (just) entropy re-encoding

Watermarking is not at all a common transcoding application

Very few people/companies need bit stream transcoders

Very few people/companies build bit stream transcoders

One known transcoder from the University of Ghent (being evaluated)

Andreas Unterweger (Univ. of Salzburg) Building a transcoder for watermarking March 9, 2012 8 / 18



(Ab)using existing encoders and decoders

Encoders and decoders are combined to (classic) transcoders

Idea: combine only the parts we need to get a bit stream transcoder

Issues:

Small number of open source encoders and decoders to choose from
Decoders are not built to decode only up to a certain level
Encoders are not built to encode only down from a certain level
Different implementations are very hard to bridge

Andreas Unterweger (Univ. of Salzburg) Building a transcoder for watermarking March 9, 2012 9 / 18



Overview of selected open source H.264 encoders/decoders

Implementation Encoder Decoder Speed State
JM (JVT) X X Slow Mature
x264 X – Fast Mature
libavcodec –∗ X Fast Mature
IPP∗∗ (Intel) X X Fast Mature
t264 X –∗∗∗ Slow Alpha

∗ Can use x264’s library version when built with it
∗∗ From IPP code samples; relies on IPP libraries
∗∗∗ Not fully implemented

JM based implementations: JSVM, JMVM, KTA
libavcodec based implementations: ffmpeg and others (ffmpeg based)

Andreas Unterweger (Univ. of Salzburg) Building a transcoder for watermarking March 9, 2012 10 / 18



H.264 encoder/decoder selection

Short summary

t264 does not decode properly and is not mature enough
x264 does not decode
libavcodec decodes and can encode using x264’s library
JM and IPP encode and decode

Possible selection

Parts of x264, JM or IPP for the encoder side
Parts of libavcodec, JM or IPP for the decoder side

Side note: libavcodec based transcoder not feasible as x264 library
bridging cannot be reused

Andreas Unterweger (Univ. of Salzburg) Building a transcoder for watermarking March 9, 2012 11 / 18



Combining different encoder and decoder parts

Different implementations use

Different data structures
Different functions
Different intermediate steps to combine

Consequences

Bridging slows down transcoding due to extensive copying/converting
Combining different implementations is hard and time consuming
Using only one may be a better idea

Andreas Unterweger (Univ. of Salzburg) Building a transcoder for watermarking March 9, 2012 12 / 18



Using code from one implementation

Reduced number of possibilities to choose from

JM (slow)
IPP (fast, but relies on IPP libraries – costs!)

Issues

Decoder design differs from encoder design
Encoders/decoders are not designed for intermediate data access
Copying parsed bits to the output is not enough

Andreas Unterweger (Univ. of Salzburg) Building a transcoder for watermarking March 9, 2012 13 / 18



Example: Difference between encoder and decoder I

Example from IPP: encode/decode macroblock type with CABAC

Encoder side:

One function to encode all macroblock types for all slice types
Function decides what to encode based on macroblock

Decoder side:

Multiple functions (one for each macroblock and slice type)
Caller has to choose appropriate function and set up environment

Andreas Unterweger (Univ. of Salzburg) Building a transcoder for watermarking March 9, 2012 14 / 18



Example: Difference between encoder and decoder II

Encoder side (adopted from umc h264 bs tmpl.h):

Status MBTypeInfo_CABAC(void* state,

EnumSliceType SliceType,

Ipp32s mb_type_cur,

MB_Type type_cur,

MB_Type type_left,

MB_Type type_above);

Decoder side (umc h264 segment decoder.h):

void DecodeMBTypePSlice_CABAC(void);

Different parameters

Different data structures

Different environments

Andreas Unterweger (Univ. of Salzburg) Building a transcoder for watermarking March 9, 2012 15 / 18



What about implementing a transcoder from scratch?

Advantages

Coding effort is limited to the parts we need
Bridging is not necessary as built in by design
Licensing costs are not an issue

Disadvantages

Existing implementations are not reused
Very hard and time consuming

Hardness estimation

Typical scale: several thousand lines of code (H.264)
Hundreds of video sequences to test to assure stability
Requires a deep understanding of the H.264 standard

Andreas Unterweger (Univ. of Salzburg) Building a transcoder for watermarking March 9, 2012 16 / 18



Conclusion

Building a transcoder for watermarking is hard

Writing it from scratch is too time consuming

Classic transcoders cannot be used

Solution 1: Use an existing (rare) bit stream transcoder

Evaluation pending (can it do what we want it to do?)
Final costs and licensing unclear

Solution 2: Build a bit stream transcoder

Parts of existing encoders and decoders have to be (re)used
Connecting these parts is not trivial

Andreas Unterweger (Univ. of Salzburg) Building a transcoder for watermarking March 9, 2012 17 / 18



Thank you for your attention!

Questions?

Andreas Unterweger (Univ. of Salzburg) Building a transcoder for watermarking March 9, 2012 18 / 18


	Overview
	What do we want?

	Terms
	Term: Encoder
	Term: Decoder
	Term: Transcoder (classic)
	Term: Bit stream transcoder

	Issues with existing solutions
	What is wrong with classic transcoders?
	Is there no ready-to-use solution?

	Encoder/decoder resuse as an alternative
	(Ab)using existing encoders and decoders
	Overview of selected open source H.264 encoders/decoders
	H.264 encoder/decoder selection
	Combining different encoder and decoder parts
	Using code from one implementation
	Example: Difference between encoder and decoder

	Another alternative?
	What about implementing a transcoder from scratch?
	Conclusion
	Thank you for your attention!


