Definitionen
Wenn statische Werte nicht flexibel genug sind oder sich laufend ändernde Größen abhängig von anderen sind und Sie daher dynamische Berechnungen durchführen möchten ist die Verwendung von Definitionen quasi unvermeidlich. Die folgenden Abschnitte erläutern die Möglichkeiten von Definitionen und zeigen jeweils Beispiele zur Verwendung auf.
Wichtiger Hinweis: Es ist generell auf die Groß-/Kleischreibung zu achten - sowohl bei Variablen und Konstanten als auch bei Funktionsnamen! Beispiele zur Verwendung von Definitionen finden Sie im Beispiel zur Addition zweier Zeiger und im Beispiel zur komplexen Funktionsberechnung.
Unterstützte Rechenoperationen
Operand |
Bedeutung |
Beispiel |
+ |
Addition |
Zeiger1+Zeiger2 |
- |
Subtraktion |
Zeiger1-Zeiger2 |
* |
Multiplikation |
2*Zeiger1 |
/ |
Division |
1/2 |
^ |
Potentiation |
2^3 |
Unterstützte Konstanten
Konstante |
Wert |
e |
2.71828182846 |
pi |
3,14159265359 |
j |
j (Imaginäre Einheit) |
Unterstützte Variablen
Es werden alle Zeigernamen unterstützt sofern diese gültig sind. Informationen zur Gültigkeit von Zeigernamen finden Sie unter anderem hier (Punkt 2).
Unterstützte Funktionen
Funktion |
Bedeutung |
Beispiel |
re |
Realteil |
re(Zeiger1) |
im |
Imaginärteil |
im(Zeiger1) |
abs |
Betrag |
abs(Zeiger1) |
angle |
Phase |
angle(Zeiger1) |
conj |
Konjugiert komplex |
conj(Zeiger1) |
sqr |
zum Quadrat |
sqr(j) |
sqrt |
Quadratwurzel |
sqrt(-1) |
exp |
e^ |
exp(j) |
ln |
Logarithmus naturalis |
ln(1) |
sin |
Sinus |
sin(Zeiger1) |
cos |
Cosinus |
cos(Zeiger1) |
tan |
Tangens |
tan(Zeiger1) |
Wichtige Bedienungshinweise
- Leerzeichen werden ignoriert; zusammengesetzte Zahlen-/Konstanten- bzw. Zahlen-/Variablen-Kombinationen wie z.B.
2Zeiger1
werden als Multiplikation interpretiert
- Die Berechnung von Wurzeln (z.B. dritte Wurzel) wird nicht direkt unterstützt. Verwenden Sie stattdessen
x^(1/3)
- Die Rechengenauigkeit - insbesondere bei Winkelfunktionen - ist programmtechnisch beschränkt. Es kann daher vorkommen, dass z.B.
e^(j*pi)+1
nicht genau 0 ergibt
- Ausdrücke wie
1/0
werden zwar als unendlich (INF) erkannt, sollten aber - ebenso wie unbestimmte Formen (0/0
, 0^0
) - vermieden werden
- Es werden beliebig viele Klammerebenen unterstützt
- Es werden sowohl reelle als auch komplexe Zahlen unterstützt; komplexe Zahlen können wie folgt eingegeben werden:
- Standardmäßig wird im Programm in Radiant gerechnet; eine Eingabe wie
90°
wird intern in pi/2
umgerechnet
- Negation und Inversion werden unterstützt. Negation:
-Zeiger1
, Inversion: 1/Zeiger1
bzw. Zeiger1^(-1)
- Zirkelbezüge (zirkuläre Referenzen) führen dazu, dass Zeiger nicht gezeichnet werden (vgl. Abschnitt Fehler). Unter Zirkelbezüge fallen generell Defintionen, in denen ein Zeiger sich selbst (z.B.
Zeiger1=Zeiger1+1
) oder sich zwei Zeiger gegenseitig (z.B. Zeiger1=Zeiger2
und Zeiger2=Zeiger1
) referenzieren.
Fehler
Die Ausdrücke im Definitionsfeld werden in Echtzeit während der Eingabe ausgewertet. Ist ein Ausdruck unvollständig oder eine Funktion/Variable/Konstante unbekannt wird in rotem Text eine entsprechende Fehlermeldung unter dem Feld angezeigt. Tritt während der Berechnung eines Zeigers ein Fehler auf wird in der rechten unteren Ecke des Hauptfensters die Anzahl der Fehler angezeigt. Durch einen Rechtsklick auf diese Stelle erhalten Sie detaillierte Informationen über die betroffenen Zeiger und die detaillierte Fehlermeldung. Achtung: Zeiger, die vom Fehler betroffen sind, werden nicht gezeichnet (solange der Fehler nicht behoben ist). Durch einen Klick auf einen Menüeintrag wird das Eigenschaftsfenster des jeweiligen Zeigers angezeigt damit Sie dessen Defintion korrigieren können.