
Exercise Sheet Hybrid Encryption Cryptography (laboratory portion)

Exercise Sheet Hybrid Encryption

Solve the following exercises and submit them until the communicated date.

LB-HE 01. (Code::Blocks template GMP and libsodium project)

A server (sender) wants to send an encrypted message to a client (recipient).
In the process, a symmetric encryption scheme, specifically AES, is to be used
for performance reasons. In order to exchange the key between the two com-
municating parties in advance, Diffie-Hellman key exchange is used. From key
generation to symmetric encryption, all steps are to be implemented.
To do so, using the GMP and libsodium (see LB-S 01.), write a program
which implements the following operations and can be invoked like <operation>
[<operand 1> <operand 2>]:

� ServerGeneratePartialKey to generate a number x ∈ Z∗
p and to subse-

quently compute the partial key S := gx mod (p). x and S are output
in decimal representation to std::cout in exactly the following format
(example output):

x: 1559258775283944[...]

S: 1311271927357378[...]

� ClientGeneratePartialKey to generate a number y ∈ Z∗
p and to subse-

quently compute the partial key C := gy mod (p). y and C are output
analogously to the server (example output):

y: 1175596360350942[...]

C: 2826535490322092[...]

Note that S and C must be mutually distinct, i.e., gx ̸≡ gy mod (p).

� ServerGenerateSessionKey to compute the 256-bit-long session key k :=
H (Cx ≡ (gy)x mod (p)) for the sender based on C and x, which are
passed as command line arguments in this order. The key is output in
hexadecimal representation to std::cout in exactly the following for-
mat (example output):

d319bbb924009b66[...]

� ClientGenerateSessionKey to compute the 256-bit-long session key k :=
H (Sy ≡ (gx)y mod (p)) for the recipient based on S and y, which are
passed as command line arguments in this order. The key is output anal-
ogously to the server (example output):

d319bbb924009b66[...]

Andreas Unterweger and Fabian Knirsch, FH Salzburg Page 1 of 5



Exercise Sheet Hybrid Encryption Cryptography (laboratory portion)

Note that the session key k must be identical for the server and the client.
This can only be checked by an observer who sees the keys on both sides.

� ServerEncrypt to encrypt a message with the (previously and separately
generated) session key. The message as text as well as the session key in
hexadecimal representation are to be passed as command line arguments
in exactly this order. The encrypted message is output to std::cout in
hexadecimal representation. Note that only the passed message is to be
encrypted, but no additional data.

� ClientDecrypt to decrypt a message with the (previously and separately
generated) session key. The encrypted message as well as the session key,
both in hexadecimal representation, are to be passed as command line
arguments in exactly this order. The decrypted message is output as text
to std::cout.

Example invocations:

� ServerGeneratePartialKey

� ClientGeneratePartialKey

� ServerGenerateSessionKey 2826535490322092[...] 1559258775283944[...]

� ClientGenerateSessionKey 1311271927357378[...] 1175596360350942[...]

� ServerEncrypt Hallo d319bbb924009b66[...]

� ClientDecrypt e7e25195d4bcff8c[...] d319bbb924009b66[...]

Hints: To generate random numbers using GMP, first call
gmp randinit default(prng state); and then gmp randseed ui(prng state,

time(nullptr)); in order to initialize the pseudo-random number generator
with your system’s time. Subsequently, use the mpz urandomm function to gen-
erate the actual (pseudo-)random number. Use the following values for g and
p (adopted from https: // docs. oracle. com/ javase/ 7/ docs/ technotes/

guides/ security/ StandardNames. html ):

1 const char * const g_as_text = "\

2 f7e1a085d69b3ddecbbcab5c36b857b97994afbbfa3aea82f\

3 9574 c0b3d0782675159578ebad4594fe67107108180b44916\

4 7123 e84c281613b7cf09328cc8a6e13c167a8b547c8d28e0a\

5 3ae1e2bb3a675916ea37f0bfa213562f1fb627a01243bcca4\

6 f1bea8519089a883dfe15ae59f06928b665e807b552564014\

7 c3bfecf492a";

8 const mpz_class g(g_as_text , 16);

9
10 const char * const p_as_text = "\

11 fd7f53811d75122952df4a9c2eece4e7f611b7523cef4400c\

12 31 e3f80b6512669455d402251fb593d8d58fabfc5f5ba30f6\

13 cb9b556cd7813b801d346ff26660b76b9950a5a49f9fe8047\

Andreas Unterweger and Fabian Knirsch, FH Salzburg Page 2 of 5

https://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html
https://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html


Exercise Sheet Hybrid Encryption Cryptography (laboratory portion)

14 b1022c24fbba9d7feb7c61bf83b57e7c6a8a6150f04fb83f6\

15 d3c51ec3023554135a169132f675f3ae2b61d72aeff222031\

16 99 dd14801c7";

17 const mpz_class p(p_as_text , 16);

In order to reduce the 1,024-bit long result (gx)
y ≡ (gy)

x
mod (p) to 256

bits, i.e., to k, compute the SHA-256 hash of the result’s ASCII representa-
tion (mpz class::get str()) as in LB-S 00. a).
Before encryption and decryption, use the HexStringToArray function from ex-
ample LB-S 03. To encrypt and decrypt messages, respectively, use AES-256 in
GCM mode from libsodium. The documentation at https: // doc. libsodium.
org/ secret-key_ cryptography/ aead/ aes-256-gcm describes authenticated
encryption which additionally performs a verification during decryption. For
encryption and decryption, use ad = nullptr, adlen = 0 and a zero nonce as
follows:

1 const unsigned char nonce[crypto_aead_aes256gcm_NPUBBYTES] =

↪→ {0};

Warning: Never use a constant nonce in real-world applications! It is only
used here in order to simplify the implementation.

LB-HE 02. (not to be submitted)

Form groups of two as determined by the lecturers, where one person plays
the role of the server and the other person correspondingly plays the role of
the client. Verify the correctness and interoperability of your programs from
example 01. in two separate steps. First, exchange all data required for the key
exchange via e-mail. Take care that you do not exchange data which need to
stay secret in the Diffie-Hellman protocol. Then, send a message from the server
to the client with the agreed-upon session key. Make sure that the client can
decrypt the message correctly.

LB-HE 03. (not to be submitted)

Generate a self-signed X.509 certificate for yourself which contains the public
key of an RSA key pair. Simultaneously (with the same command), the corre-
sponding secret key is to be created (without line breaks!):

openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.crt

-days 365

Adjust the output paths of the two files (key.pem and cert.crt) if necessary.
Specify meaningful values for the prompted data and remember the entered
password (keyphrase).

Andreas Unterweger and Fabian Knirsch, FH Salzburg Page 3 of 5

https://doc.libsodium.org/secret-key_cryptography/aead/aes-256-gcm
https://doc.libsodium.org/secret-key_cryptography/aead/aes-256-gcm


Exercise Sheet Hybrid Encryption Cryptography (laboratory portion)

LB-HE 04. (Code::Blocks template GMP, libsodium and SSL project)

A client wants to authenticate itself to a server. To do so, a challenge-response-
based protocol is used. The necessary steps for this are to be implemented.
Using the GMP, libsodium and the SSL, write a program which implements
the following operations and can be invoked like <operation> <operand 1>

[<operand 2> [<operand 3>]]:

� ServerReadPublicKey to read the public key pk := (e,N) of an RSA
cryptosystem from a certificate (e.g., the one created in example 03.),
whose file path is passed as an argument. e andN are output to std::cout
in exactly the following format (example output):

Public key: (65537, 7059515099399582[...])

� ClientReadPrivateKey to read the secret key sk := (d,N) of an RSA
cryptosystem from a key file (e.g., the one created in example 03.), whose
file path is passed as an argument. d and N are output to std::cout in
exactly the following format (example output):

Private key: (4697366898921479[...], 7059515099399582[...])

The password (keyphrase) required for this is automatically prompted
from the user via std::cin as long as the hints below are followed.

� ServerCreateChallenge to create a challenge c := Epk(r), where r is a
random number between 0 and N − 1 created by the program. Here, N
means the modulus N of the public key pk. e and N are to be passed as
command line arguments in exactly this order and in decimal representa-
tion. c and r are output to std::cout in exactly the following format
(example output):

Challenge: 4766680102085249[...]

Random number: 6688689096349587[...]

� ClientCreateResponse to create a response h := H(Dsk(c)), where c
denotes the challenge from the previous step and H denotes the crypto-
graphic hash function SHA-512 which is applied to the decimal (base-10)
representation of the decrypted challenge. c, d and N are to be passed as
command line arguments in exactly this order and in decimal representa-
tion. h is output to std::cout in decimal representation.

� ServerVerifyResponse to compare the expected response h′ := H(r) to
the actual response h. If h and h′ match, Authenticated successfully

is output to std::cout, Authentication failed otherwise. h and r are
to be passed as command line arguments in exactly this order and in
decimal representation.

Andreas Unterweger and Fabian Knirsch, FH Salzburg Page 4 of 5



Exercise Sheet Hybrid Encryption Cryptography (laboratory portion)

Example invocations:

� ServerReadPublicKey cert.crt

� ClientReadPrivateKey key.pem

� ServerCreateChallenge 65537 7059515099399582[...]

� ClientCreateResponse 4766680102085249[...] 4697366898921479[...]

↪→7059515099399582[...]

� ServerVerifyResponse 1262648800327937[...] 6688689096349587[...]

Hints: Use as many code parts as possible from the previous exercises. Analo-
gously to example 01, to create random numbers, use the mpz urandomm func-
tion, where an upper bound can be specified.
The provided template project already contains a code file certhelp.cpp as
well as the corresponding header file certhelp.h in which the two functions
ReadPublicKeyFromFile and ReadPrivateKeyFromFile are contained to read
keys in the first two steps of the protocol. The usage of the functions is self-
explanatory.

LB-HE 05. (not to be submitted)

Form groups of two as determined by the lecturers, where one person plays
the role of the server and the other person correspondingly plays the role of
the client. Verify the correctness and interoperability of your programs from
example 04. with the respective protocol steps. Exchange the necessary data via
e-mail. In doing so, take care that no data is exchanged which would compromise
the security of the challenge-response scheme.

Andreas Unterweger and Fabian Knirsch, FH Salzburg Page 5 of 5


