
Exercises on Public Key Cryptography IT Security Engineering (Laboratory)

Exercises on Public Key Cryptography

Solve the following exercises and submit them until the communicated date.

LB-PKC 01.

The (encrypted) ciphertext c of a message m with a public key (e,N) in RSA is
defined as follows: c ≡ me mod N . Analogously, the decryption with a private
key (d,N) is defined as follows: m ≡ cd mod N .
Write a program which implements encryption and decryption with RSA based
on the Public key cryptography project template in Code::Blocks in the Pro-
gramming VM (see the Tutorial on commissioning the Programming VM on
how to use all of them). The program has to expect three command line argu-
ments in the following order: the message m to be encrypted (or decrypted) as
a value, an exponent (e or d) and the modulus (N). The encrypted or decrypted
value must be printed to std::cout. Use the mpz powm function (see https:

//gmplib.org/manual/Integer-Exponentiation) to compute powers within
a modulus. You can test your program with the example values e = 29, d = 85,
N = 391 and any valid value of m < N .
Hint: Use instances of the mpz class class to perform arithmetic on very large
numbers (do not use int or similar built-in data types which cannot do so!).
Read the short documentation for this class (https: // gmplib. org/ manual/
C_ 002b_ 002b-Interface-General# C_ 002b_ 002b-Interface-General ) and
take special note of the mpz class::get mpz t method which is required to pass
mpz class instances to mpz powm and similar functions.
Evaluating mpz class instances during debugging is possible by entering
variable name.get str(10) into the Watch window.

Example calls (with command line arguments) for testing:
./test 7 29 391 must print the output 74.
./test 74 85 391 must print the output 7.

LB-PKC 02. (not to be submitted)

Generate a personal, self-signed X.509 certificate which contains the public key
of an RSA key pair. Simultaneously, the corresponding private key has to be
created (with the same command, without line breaks):

openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.crt

If necessary, adapt the output paths of both files (key.pem and cert.crt).
Enter meaningful values when prompted for data and remember the entered
password (keyphrase). The password must be at least four characters long.

LB-PKC 03.

Modify your program from exercise 01. so that the public key pk := (e,N)
and the private (secret) key sk := (d,N) are not passed as command line ar-

A. Unterweger & F. Knirsch, Salzburg Univ. of Applied Sciences Page 1 of 2

https://gmplib.org/manual/Integer-Exponentiation
https://gmplib.org/manual/Integer-Exponentiation
https://gmplib.org/manual/C_002b_002b-Interface-General#C_002b_002b-Interface-General
https://gmplib.org/manual/C_002b_002b-Interface-General#C_002b_002b-Interface-General


Exercises on Public Key Cryptography IT Security Engineering (Laboratory)

guments, but instead read from a certificate or key file, respectively. The path
to the respective file has to be provided as a command line argument, followed
by a message (value) to be encrypted or decrypted, respectively. To distinguish
between encryption and decryption, an additional first command line argument
Encrypt or Decrypt has to be provided. Make use of the implemented helper
functions available in the project to read the keys from the respective files and
use the files generated in exercise 02. to test your program.
Note: The Code::Blocks project template contains two helper functions
ReadPublicKeyFromFile and ReadPrivateKeyFromFile to read keys from a
certificate or private key file, respectively (see the certhelp.h header file in-
cluded in the project). The usage of these functions is self-explanatory.

Example calls (with command line arguments) for testing:
./test Encrypt cert.crt 12345 prints a value, referred to as output1.
./test Decrypt key.pem output1 must print the output 12345.
Note: The example calls assume a corresponding certificate (cert.crt) and pri-
vate key file (key.pem) in the same directory as the program. In the decryption
call, output1 is a place holder and not a verbatim argument.

LB-PKC 04. (bonus exercise – voluntary)

Modify your program from exercise 03. so that it is encrypts and decrypts
character strings instead of numerical values. In order to avoid issues with
non-printable characters, the message (when encrypting) or ciphertext (when
decrypting) must not be passed as a command line argument, but read from a
file instead whose path is passed as a command line argument. Similarly, the
ciphertext (when encrypting) or the message (when decrypting) must not be
output onto the console, but written into a file instead whose path is passed as
a command line argument.
For the conversion between character strings and numerical values, multiple
approaches exist. One of the simplest is to treat each character as a num-
ber between 0 and 255 (ASCII characters only use the lower half of this range
when assigning each character its position in the ASCII table, ciphertexts use
the full range). For example, the character A is converted to the value 65 and
vice versa. The values of multiple converted characters can be interpreted as
one larger number in base 256, e.g., the character string ABC is converted to
65 · 2562 + 66 · 2561 + 67 · 2560 = 4, 276, 803 and vice versa.
Note: For reading from and writing to files, the std::ifstream and
std::ofstream classes (both require the fstream header) can be used. Files
with ciphertext strings must always be treated as binary files by using the corre-
sponding stream file mode. For simplicity, all files may be treated as binary files.

Example calls (with command line arguments) for testing:
./test Encrypt cert.crt input.txt output.txt creates output.txt.
./test Decrypt key.pem output.txt check.txt creates check.txt which is
identical to input.txt.

A. Unterweger & F. Knirsch, Salzburg Univ. of Applied Sciences Page 2 of 2


