
Exercise Sheet Public Key Cryptography Cryptography (laboratory portion)

Exercise Sheet Public Key Cryptography

Solve the following exercises and submit them until the communicated date.

LB-PKC 00. (not to be submitted)
(Code::Blocks template GMP project)

Using the GMP, write a program which multiplies two numbers passed as argu-
ments and outputs the result. Verify your program with the example number
pairs 2 3 and x x, where x is the largest possible number which can be stored
in a signed 64-bit integer.

LB-PKC 01. (Code::Blocks template GMP project)

The RSA encryption c of a message m with the public key (e,N) is defined as
follows: c ≡ me (mod N). The decryption with the secret key (d,N) is defined
analogously: m ≡ cd (mod N).
Using the GMP, write a program which implements an RSA encryption or de-
cryption. The program is supposed to accept three arguments in the following
order: the message m to be encrypted or decrypted, respectively, as a number,
an exponent (e or d, respectively) and the modulus (N). The value to be en-
crypted or decrypted, respectively, is to be output (without additional output)
as a number to std::cout. Use the mpz powm function for your implementation
and test it with m = 7, e = 29, d = 85 and N = 391.
Hint: Use the mpz class::get mpz t method in order to pass the instances of
the mpz class class to the mpz powm function. For details on the GMP func-
tions, refer to the documentation at https: // gmplib. org/ manual/ Function-Index.
html# Function-Index . mpz class instances can be evaluated during debug-
ging by entering variable name.get str(10) into the Watch window, where
variable name must be replaced by the variable name of the instance.

LB-PKC 02. (Code::Blocks template GMP project)

An RSA key pair, consisting of a public key (e,N) and a secret key (d,N) can
be generated as follows:

1. Choose two mutually distinct primes p and q, i.e., p, q ∈ P, where p ̸= q.

2. Compute N = pq.

3. Compute φ(N) = (p− 1)(q − 1).

4. For the public key, choose an integer e between 1 and φ(N) (excluding
both limits) which is relatively prime to φ(N), i.e., gcd(e, φ(N)) = 1.

5. For the secret key, compute d as the inverse of emodulo φ(N), i.e., d ≡ e−1

(mod φ(N)).

Andreas Unterweger and Fabian Knirsch, Salzburg UAS Page 1 of 2

https://gmplib.org/manual/Function-Index.html#Function-Index
https://gmplib.org/manual/Function-Index.html#Function-Index

Exercise Sheet Public Key Cryptography Cryptography (laboratory portion)

Write a program which does not accept any arguments, creates an RSA key
pair as specified above and outputs the public and the secret key in exactly
the following pattern (upper case and lower case, spaces etc.) to std::cout:

Public key: (29, 391)

Private key: (85, 391)

Verify the keys by using them to encrypt and again decrypt a message with your
program from example 01. The key length (bit length of N which is influences
by the lengths of p and q) is supposed to be exactly 2,048 bits. If the key length
is not exactly 2,048 bits, a new key must be generated. If necessary, generate
new keys until the length is achieved exactly.
Hint: Use the two functions gmp randinit default and gmp randseed ui to
initialize a random number generator at the start of your program. Using this
generator and the mpz urandomb function, generate a random number and apply
mpz nextprime in order to obtain a prime. For determining the length, use the
mpz sizeinbase function.
For the choice of e, iterate through the specified value range until you have
found a value which satisfies the specified criterion. For computing the greatest
common divisor, use the mpz gcd function. For computing the inverse in the
modulus, use mpz invert.
Wherever possible, use the overloaded operators, e.g., +, <, == etc. for the
corresponding arithmetic and comparison operations.

LB-PKC 03. (Code::Blocks template GMP project)

Modify your program from exercise 01. so that it is encrypts and decrypts
character strings instead of numerical values. In order to avoid issues with
non-printable characters, the message (when encrypting) or ciphertext (when
decrypting) must not be passed as a command line argument, but read from a
file instead whose path is passed as a command line argument. Similarly, the
ciphertext (when encrypting) or the message (when decrypting) must not be
output onto the console, but written into a file instead whose path is passed as
a command line argument. Example call: input.txt output.txt $e $N.
For the conversion between character strings and numerical values, multiple
approaches exist. One of the simplest is to treat each character as a num-
ber between 0 and 255 (ASCII characters only use the lower half of this range
when assigning each character its position in the ASCII table, ciphertexts use
the full range). For example, the character A is converted to the value 65 and
vice versa. The values of multiple converted characters can be interpreted as
one larger number in base 256, e.g., the character string ABC is converted to
65 · 2562 + 66 · 2561 + 67 · 2560 = 4, 276, 803 and vice versa.
Note: For reading from and writing to files, the std::ifstream and
std::ofstream classes (both require the fstream header) can be used. Files
with ciphertext strings must always be treated as binary files by using the cor-
responding stream file mode. For simplicity, all files may be treated as binary
files.

Andreas Unterweger and Fabian Knirsch, Salzburg UAS Page 2 of 2

