
Exercise Sheet Signatures Cryptography (laboratory portion)

Exercise Sheet Signatures

Solve the following exercises and submit them until the communicated date.

LB-S 00. (not to be submitted)
(Code::Blocks template libsodium project)

a) Create a new project based on the template project for libsodium and
execute it with your first name as an argument. The output of the pro-
gram is the SHA-256 hash of the passed argument. Verify the output
with the command echo -n <first name> | sha256sum (without angle
brackets!) on the command line.

b) Adapt the code from a) so that SHA-512 is used instead of SHA-256. Using
the documentation of libsodium, go through the code step by step and
adapt the program accordingly. For verification, use sha512sum instead
of sha256sum on the command line – the remaining usage is unchanged.

Hint: You can find the documentation of libsodium at https: // download.

libsodium. org/ doc/ advanced/ sha-2_ hash_ function. html

LB-S 01. (Code::Blocks template GMP and libsodium project)

Using the GMP and libsodium, write a program which implements the following
functions:

� Sign to sign a message message with the secret key (d, N) from an RSA
key pair. The signature is output in decimal representation to std::cout

in exactly the following format (example output) without additional
output:

4272599298832472[...]

� Verify to verify the validity of a signature signature corresponding to the
message message and the public key (e, N) from an RSA key pair. The
validity is indicated through the text output Signature valid. or Signature
invalid. to std::cout, respectively.

The program is supposed to be called with four or five parameters via the
command line as follows: ./test Sign <message> <d> <N> or ./test Verify

<message> <signature> <e> <N>, respectively. For the creation of this pro-
gram, combine your code from exercise 00. b) for the computation of the hash
and your code from LB-PKC 01. for the encryption or decryption with RSA,
respectively. Test your program with an RSA key pair, e.g., created with your
program from LB-PKC 02. with a key length of 2,048 bits.
Hint: In order to convert the hash determined with libsodium into a represen-
tation which is compatible for computations with the GMP, the array returned

Andreas Unterweger and Fabian Knirsch, Salzburg UAS Page 1 of 3

https://download.libsodium.org/doc/advanced/sha-2_hash_function.html
https://download.libsodium.org/doc/advanced/sha-2_hash_function.html

Exercise Sheet Signatures Cryptography (laboratory portion)

from the hash function must be represented as a number byte by byte and then
be interpreted in its entirety as a (large) number. You can use the following
function a variation thereof in order to achieve this:

1 #include <sstream >

2 #include <iomanip >

3
4 void libsodium_to_GMP(const unsigned char (& libsodium_value)

↪→ [crypto_hash_sha512_BYTES], mpz_class &GMP_value)

5 {

6 std:: stringstream s;

7 s << std::hex;

8 for (size_t i = 0; i < sizeof libsodium_value; i++)

9 s << std::setw (2) << std:: setfill('0') << static_cast <

↪→ int >(libsodium_value[i]);

10 const std:: string string_as_hex = s.str();

11 mpz_set_str(GMP_value.get_mpz_t (), string_as_hex.c_str (),

↪→ 16);

12 }

Example invocation:

1 unsigned char hash[crypto_hash_sha512_BYTES];

2 /* TODO: Calculate hash as usual */

3 mpz_class hash_value;

4 libsodium_to_GMP(hash , hash_value);

LB-S 02. (not to be submitted)

Form groups of two as determined by the lecturers and verify the correctness
and interoperability of your programs from example 01. through an e-mail ex-
change of signed messages. To do so, person PA generates an RSA key pair
(dA, eA, NA) as well as an arbitrary message ma, both of which are used to gen-
erate a signature sa using the implementation of 01. (of PA). Subsequently, PA

sends ma, sa and the public key (eA, NA) to person PB via e-mail. This person
passes the transmitted information to the implementation (of PB) in order to
verify the signature. Subsequently, exchange the roles of PA and PB and repeat
the test.

LB-S 03. (Code::Blocks template libsodium project)

Write a program which, analogously to example 01. can sign and verify mes-
sages. Instead of your own implementations, use only the signing functionality
of libsodium. Use the so-called Combined Mode in which the message to be
signed it output together with the signature, and be guided by the documen-
tation (https://download.libsodium.org/doc/public-key_cryptography/
public-key_signatures.html) for the implementation. Note that, in this
mode, the signature and the plaintext of the message are both contained in

Andreas Unterweger and Fabian Knirsch, Salzburg UAS Page 2 of 3

https://download.libsodium.org/doc/public-key_cryptography/public-key_signatures.html
https://download.libsodium.org/doc/public-key_cryptography/public-key_signatures.html

Exercise Sheet Signatures Cryptography (laboratory portion)

the output combined, and that only one single command line parameter is re-
quired for both them for the verification, i.e., the verification expects only three
command line parameters in total.

The key generation is supposed to happen directly during signing, where the
public key is output together with the signature in exactly the following format:

Signed message: d584bb849f3a8d96[...]

Public key: 8ab03757373db7a0[...]

Note that libsodium uses elliptic curves instead of RSA for both signing and
verifying the signature, which is why the key lengths are shorter and the keys
consist only of one single value.
Hints: For the output of the signature and the public key, use the loop for
the hexadecimal output from example 00. To read in hexadecimal columns of
digits in a format which is compatible with libsodium, you can use the following
function or a variation thereof:

1 #include <sstream >

2 #include <cstring >

3 #include <iomanip >

4
5 bool HexStringToArray(const char * const text , unsigned char

↪→ array[], const size_t array_size)

6 {

7 if (strlen(text) != 2 * array_size)

8 return false;

9 for (size_t i = 0; i < array_size; i++)

10 {

11 const std:: string text_part(text + 2 * i, 2); // Process

↪→ 2 characters (one byte) at a time

12 std:: stringstream s(text_part);

13 s >> std::hex;

14 int value;

15 s >> value;

16 array[i] = value;

17 }

18 return true;

19 }

Andreas Unterweger and Fabian Knirsch, Salzburg UAS Page 3 of 3

