
Secret Key Cryptography
Cryptography (lecture portion)

Andreas Unterweger

School of ITS
Salzburg UAS

Winter term 2023/24

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Winter term 2023/24 1 / 35

Recap

Traditional naming of actors

Alice
Bob
Eve

Terms

Plaintext (further: chosen-plaintext attack)
Ciphertext (further: chosen-ciphertext attack)
Key
Encryption (function)
Decryption (function)

Types of ciphers

Symmetric vs. asymmetric cryptography
Stream vs. block ciphers

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz, ch. 1; Ferguson, ch. 2 2 / 35

Overview of secret key cryptography

Symmetric cryptography: Key is kept secret/private

Perfect security (Vernam) requires keys as long as the message

→ Impractical (shorter keys desired)

→ Practical solution: Approaches which are not perfectly secure, but
only computationally secure (weaker security guarantee)

Computational security example: Cipher can be broken with a
probability of < 10−30 in 200 years using the fastest available
computer

Computationally secure schemes rely on (difficulty) assumptions

Focus topics:

Example of a symmetric cipher: The Advanced Encryption Standard
Key exchange
Cryptographic hashes (for integrity)

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz (2021), ch. 3 3 / 35

Overview of AES

The Advanced Encryption Standard (AES)

Standardized as winner of a competition (2001)
Widely used and supported
Block cipher (128 bits) with a substitution-permutation network
Supports 128-, 192- or 256-bit keys
Known attacks on simplified variations of AES, but no better way
known to break full AES than exhaustive/brute-force key search

Recall: 2128 ≈ 1038 possible keys is a lot
Optimistic 1010 decryptions/s on a desktop computer: 1028 s ≈ 1020 a!
Optimistic 1020 decryptions/s on a computer cluster: 1018 s ≈ 1010 a!

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz, ch. 7; Ferguson, ch. 3 4 / 35

The AES algorithm I

High-level overview of encryption:

4 · 4 byte state array initially equal to the input (block)
Multiple rounds which change the state array
Number of rounds depends on the key length (e.g., 14 for 256 bits)
Each round: 4 stages (substitution-permutation network)
Key influences state array in each round (without details)
Final round has slightly different stages (without details)

Decryption inverts encryption steps (simplified)

Messages which are not a multiple of the block size long need to be
padded (without details)

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz, ch. 3, 7; Ferguson, ch. 3 5 / 35

The AES algorithm II

Stage 1: AddRoundKey

Derive 128-bit round key from key
XOR state array with round key

Source: Matt Crypto: AddRoundKey operation for AES.
https://commons.wikimedia.org/wiki/File:AES-AddRoundKey.svg#/media/File:AES-AddRoundKey.svg (accessed on

August 23, 2022), 2006.

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz, ch. 7; Ferguson, ch. 3 6 / 35

https://commons.wikimedia.org/wiki/File:AES-AddRoundKey.svg#/media/File:AES-AddRoundKey.svg

The AES algorithm III

Stage 2: SubBytes

Replace bytes based on a lookup table
Lookup table is fixed for all bytes and rounds

Source: Matt Crypto: SubBytes operation for AES.
https://commons.wikimedia.org/wiki/File:AES-SubBytes.svg#/media/File:AES-SubBytes.svg (accessed on August 23,

2022), 2006.

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz, ch. 7; Ferguson, ch. 3 7 / 35

https://commons.wikimedia.org/wiki/File:AES-SubBytes.svg#/media/File:AES-SubBytes.svg

The AES algorithm IV

Stage 3: ShiftRows

Cyclical shift of bytes in rows of state array
Different shift for each row

Source: Matt Crypto: ShiftRows operation for AES.
https://commons.wikimedia.org/wiki/File:AES-ShiftRows.svg#/media/File:AES-ShiftRows.svg (accessed on August

23, 2022), 2006.

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz, ch. 7; Ferguson, ch. 3 8 / 35

https://commons.wikimedia.org/wiki/File:AES-ShiftRows.svg#/media/File:AES-ShiftRows.svg

The AES algorithm V

Stage 4: MixColumns
Column-wise transformation (without details)
Achieves diffusion together with stage 3

Source: Matt Crypto: MixColumns operation for AES.
https://commons.wikimedia.org/wiki/File:AES-MixColumns.svg#/media/File:AES-MixColumns.svg (accessed on August

23, 2022), 2006.

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz, ch. 7; Ferguson, ch. 3 9 / 35

https://commons.wikimedia.org/wiki/File:AES-MixColumns.svg#/media/File:AES-MixColumns.svg

Plug-in: Substitution-permutation networks I

Multiple rounds of invertible substitution and permutation

Implement the confusion-diffusion paradigm

Source: Ebrary.net: DES. https://ebrary.net/134519/computer_science/ (accessed on August 23, 2022), 2022.

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz (2021), ch. 7 10 / 35

https://ebrary.net/134519/computer_science/

Plug-in: Substitution-permutation networks II

Confusion-diffusion paradigm

Confusion: Permute all parts/bytes of a block separately
Diffusion: Reorder bits to propagate changes to all parts of the output
Repeated use of confusion and diffusion result in random-looking
permutation overall (without details)

→ Avalanche effect: Small changes to the input result in large changes to
the output (a single input bit should affect all output bits)

→ Changing one input bit is expected to flip 50% of the output bits

Security depend on choices of substitutions and permutations as well
as the number of rounds

Networks/block ciphers by themselves are not secure against
chosen-plaintext attacks (details in chapter 3 of Katz (2008))

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz (2021), ch. 3, 7 11 / 35

Modes of operation: ECB

ECB: Electronic code book mode

Same plaintext always yields same ciphertext under same key →
identical plaintext blocks repeat in ciphertext → not secure!

Source: WhiteTimberwolf: Encryption using the Electronic Code Block (ECB) mode.
https://commons.wikimedia.org/wiki/File:ECB_encryption.svg#/media/Datei:ECB_encryption.svg (accessed on

August 23, 2022), 2013.

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz, ch. 3; Ferguson, ch. 4 12 / 35

https://commons.wikimedia.org/wiki/File:ECB_encryption.svg#/media/Datei:ECB_encryption.svg

Modes of operation: CBC I

CBC: Cipher block chaining mode

Ciphertexts from previous blocks affect ciphertext of current block

Initialization vector (IV) must be chosen for first block

Source: WhiteTimberwolf: Encryption using the Cipher Block Chaining (CBC) mode.
https://commons.wikimedia.org/wiki/File:CBC_encryption.svg#/media/File:CBC_encryption.svg (accessed on August

23, 2022), 2013.

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz, ch. 3; Ferguson, ch. 4 13 / 35

https://commons.wikimedia.org/wiki/File:CBC_encryption.svg#/media/File:CBC_encryption.svg

Modes of operation: CBC II

IV should be random and not be reused

IV must be sent with the ciphertext for decryption

Encryption and decryption cannot be parallelized

Source: WhiteTimberwolf: Decryption using the Cipher Block Chaining (CBC) mode.
https://commons.wikimedia.org/wiki/File:CBC_decryption.svg#/media/File:CBC_decryption.svg (accessed on August

23, 2022), 2013.

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz, ch. 3; Ferguson, ch. 4 14 / 35

https://commons.wikimedia.org/wiki/File:CBC_decryption.svg#/media/File:CBC_decryption.svg

Modes of operation: OFB

OFB: Output feedback mode

Only IV is input repeatedly into the block cipher, not the plaintext

→ Plaintext is XOR-ed with the encrypted byte stream

Source: WhiteTimberwolf: Encryption using the Output Feedback (OFB) mode.
https://commons.wikimedia.org/wiki/File:OFB_encryption.svg#/media/File:OFB_encryption.svg (accessed on August

23, 2022), 2013.

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz, ch. 3; Ferguson, ch. 4 15 / 35

https://commons.wikimedia.org/wiki/File:OFB_encryption.svg#/media/File:OFB_encryption.svg

Modes of operation: CTR

CTR: Counter mode (different variations)

Like OFB, but with incrementing counter (starts at random number)

Parallelizable (like OFB) and secure against chosen-plaintext attack

Source: WhiteTimberwolf: Encryption using the Counter (CTR) mode.
https://commons.wikimedia.org/wiki/File:CTR_encryption_2.svg#/media/File:CTR_encryption_2.svg (accessed on

August 23, 2022), 2013.

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz, ch. 3; Ferguson, ch. 4 16 / 35

https://commons.wikimedia.org/wiki/File:CTR_encryption_2.svg#/media/File:CTR_encryption_2.svg

Practical concerns

Which key length is sufficient?

Depends until when the ciphertext should be secure
Depends on who you ask (professional recommendations)
Comparison at https://www.keylength.com/en/compare/

AES and the presented modes do not provide

Integrity/authentication: Eve can change bits of the ciphertext without
Bob noticing → GCM (Galois/counter mode, without details) or
additional integrity checks → cryptographic hashes
Security against chosen-ciphertext attacks without additional measures
Security if they are used improperly, e.g., when IVs are reused

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz, ch. 3; Ferguson, ch. 4, 20 17 / 35

https://www.keylength.com/en/compare/

Key exchange

Secret key cryptography requires a pre-shared key

→ How do Alice and Bob share a secret key?

Physically (meeting, mailing etc.)
Key distribution centers (requires trust)

... (other solutions which are impractical for transient communication)

For multiple communicating parties

Each pair of communicating parties needs their own key
→ Quadratic complexity (impractical for storage and management)

Alternative: Diffie-Hellman key exchange

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz, ch. 11; Ferguson, ch. 11 18 / 35

Plug-in: Modular arithmetic I

For all a, b,N ∈ N\{0, 1}, a ≡ b (mod N) if a mod N = b mod N

a and b are congruent modulo N when their remainders upon division
by N are equal, e.g., 15 ≡ 3 (mod 12); 123 ≡ 35 ≡ 2 (mod 11)

Source: Time Clock Experts.com: Pyramid 13” Analog STD 12/24-Hr Clock Battery Operated (For 915MHz).
https://www.timeclockexperts.com/Pyramid-13-915MHz-9A13D-Battery-Operated-p/s9a3acgbxb.htm (accessed on

August 25, 2022), 2006.

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz (2021), ch. 9 19 / 35

https://www.timeclockexperts.com/Pyramid-13-915MHz-9A13D-Battery-Operated-p/s9a3acgbxb.htm

Plug-in: Modular arithmetic II

Adding in a modulus is like adding on a clock – examples:
11 + 3 ≡ 14 ≡ 2 (mod 12); 123 + 35 ≡ 158 ≡ 4 (mod 11)

Most standard rules of arithmetic still work in modular arithmetic:

Addition: If x ≡ x ′ (mod N) and y ≡ y ′ (mod N), then
x + y ≡ x ′ + y ′ (mod N)
Subtraction (analogously)
Multiplication: If x ≡ x ′ (mod N) and y ≡ y ′ (mod N), then
x · y ≡ x ′ · y ′ (mod N)
Division does not work in general

Invertibility (not always possible):

Define a−1 such that a · a−1 ≡ 1 (mod N)
Example: a = 3, a−1 = 4,N = 11; counter-example: a = 3,N = 12
Requires that gcd(a,N) = 1 (details in Katz (2008))

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz (2021), ch. 9 20 / 35

Plug-in: Multiplicative groups I

A multiplicative group is a set S which

is closed under multiplication (multiplying yields an element of the set)
has an identity (element) e such that ∀s ∈ S : e · s = s
has an inverse for every element

Counter-examples:

{2} does not fulfill any of the criteria
R: Zero is not invertible
{1, j ,−j} is not closed (e.g., j · j = −1)

Simple example: R\{0} is a multiplicative group

R\{0} is closed
The identity element is 1
Every element has an inverse: e−1 = 1

e

Multiplications may also be performed in a modulus

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz (2021), ch. 9 21 / 35

Plug-in: Multiplicative groups II

Multiplication tables of the groups Z∗
5 = {1, 2, 3, 4} modulo 5 (left)

and {3, 6, 9, 12} modulo 5 (right):

MSOpen Purwanto dkk 15

 Modular arithmetic is very useful for studying other topic in mathematics. For example,
in [6], Hidayah and Purwanto use modular arithmetic to construct graphs.
 A nonempty set G with a binary operation on G is a group if it satisfies the following
three properties:
 (1) ∀ܽ, ܾ, ܿ ∈ ,ܩ (ܾܽ)ܿ = ܽ(ܾܿ), i.e., the operation is associative,
 (2) ∃݁ ∈ ܽ∀,ܩ ∈ ∈,ܩ ܽ݁ = ݁ܽ = ܽ, i.e., there exists an identity element e in G,
 (3) ∀ܽ ∈ ଵିܽ∃,ܩ ∈ ܩ ∋ ܽܽିଵ = ܽିଵܽ = ݁, i.e., each element of G has an inverse in G.
 For an integer ݊ ≥ 1, the set of integers modulo ݊, ℤ௡ = {0, 1, 2, … ,݊ − 1}, is a group
under addition modulo n. For ݊ > 1, the set of all positive integers less than n and relative
prime to ݊, ॼ௡ = {ܽ ∈ ℤ௡|(ܽ,݊) = 1}, is a group under multiplication modulo ݊, the identity
element is 1.For examples, ℤହ = {0, 1, 2, 3, 4} and ॼହ = {1, 2, 3, 4} are groups under addition
modulo 5 and under multiplication modulo 5, respectively.
 We can use Cayley table to describes the structure of a finite group by arranging all the
possible products of all the group's elements in a square table. Many properties of a group
can be discovered from its Cayley table, such as whether or not the group is abelian, which
element is an identity element, and which elements are inverses of which elements. Cayley
table of ℤହ is as in Table 1.. It can be seen that its identity elements is 0.

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

Table 1. Caley table of ℤହ

 Cayley table of ॼହ is as in Table 2. It can be seen that its identity elements is 1.

× 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

Table 2. Cayley table of ॼ૞

 The set {1, 2, 3, 4, 5} is not a group under multiplication modulo 6; it has identity
element 1, but there is an element that has no invers. The elements 2, 3, and 4, have no

MSOpen Purwanto dkk 16

invers. In addition, the set is not closed under multilpication. Its Cayley table is as in Table
3.

× 1 2 3 4 5

1 1 2 3 4 5

2 2 4 0 2 4

3 3 0 3 0 3

4 4 2 0 4 2

5 5 4 3 2 1

Table 3. Elements 2, 3, and 4 have no invers

In the multiplicatve group ॼ௡ = {ܽ ∈ ℤ௡|(ܽ,݊) = 1}, the identity element is 1, but it is
known that some group under multiplication modulo ݊ have an identity element which is
not necessarily 1. For example, {3, 6, 9, 12} is a group under multiplication modulo 5 with
the identity element is 6. Its Caley table is Table 4.

× 3 6 9 12

3 9 3 12 6

6 3 6 9 12

9 12 9 6 3

12 6 12 3 9

Table 4. Multiplicative group modulo 5

In this paper we review some of the constructions, and show that there still exists a
problem to find other constructions.

2. Construction

In this section we review some construction of multiplicative groups in modular
arithmetic each of which has an identity element which is not necessarily 1. Some of the
construction is an extension of the existing group, and some other is a new construction.

McLeans [2] constructs a new group from the existing multiplicative group by
multiplying every element of the group and the modulo number by an element of the
group. For example, ॼହ = {1, 2, 3, 4} is a group under multiplication modulo 5; multiply
every element by 3 we get a multiplicative group modulo 15

{3, 6, 9, 12}.
Such construction is known as McLean’s criterion.

Sources: Purwanto, Hidayah, I. N., and Hasanah, D.: Results and Problems on Constructing Multiplicative Groups in Modular
Arithmetic. http://fmipa.um.ac.id/wp-content/uploads/2019/10/MATEMATIKA_PURWANTO-Rev-14-23.pdf (accessed on

August 25, 2022), 2019.

[1] Purwanto, Hidayah, I. N., and Hasanah, D.: Results and Problems on Constructing Multiplicative Groups in Modular
Arithmetic. http://fmipa.um.ac.id/wp-content/uploads/2019/10/MATEMATIKA_PURWANTO-Rev-14-23.pdf (accessed on
August 25, 2022), 2019.

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz (2021), ch. 9; [1] 22 / 35

http://fmipa.um.ac.id/wp-content/uploads/2019/10/MATEMATIKA_PURWANTO-Rev-14-23.pdf
http://fmipa.um.ac.id/wp-content/uploads/2019/10/MATEMATIKA_PURWANTO-Rev-14-23.pdf

Plug-in: Multiplicative groups III

Exponentiation for groups (analogous to “regular” exponentiation)

Defined as repeated multiplication: gm := g · g · · · · · g︸ ︷︷ ︸
m times

g0 := 1 (where 1 needs to be an element of the group)
Familiar rules apply, e.g., (g a)b = g a·b

Special groups Z∗
n := {1, 2, · · · , n − 1} with multiplication modulo

n ∈ P (restricted for now, general definition later)

n must be prime (otherwise some elements are not invertible)
Exponentiating to base g ∈ Z∗

n (cyclically) generates subsets/subgroups
Example: g = 3 for Z∗

5 generates {1, 3, 4, 2} = Z∗
n

Smaller example: g = 4 for Z∗
5 generates the subgroup {1, 4}

Note: For proofs of the above claims see Katz (2021)

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz, ch. 9; Ferguson, ch. 11 23 / 35

Diffie-Hellman key exchange I

Discrete logarithm (analogous to “regular” logarithm)

Inverse operation of exponentiation in a modulus
Definition: logg (h) = x if g x ≡ h mod n in Z∗

n

Example: log3(4) ≡ 2 mod 5
For some g in cyclic groups, logg is easy to compute
For some g , logg is believed to be hard to compute

Diffie-Hellman assumption (computational Diffie-Hellman problem):

Task: Given X := g x and Y := g y with known generator g and
modulus n, determine g x·y = (g x)y = (g y)x

If logg is easy to compute for g in Z∗
n, g

x·y is easy to compute as
X logg (Y) = (g x)y = g x·y

If logg is hard to compute for g in Z∗
n, g

x·y is hard to compute

→ Use this assumption to build a key exchange protocol

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz, ch. 9, 11; Ferguson, ch. 11 24 / 35

Diffie-Hellman key exchange II

Source: Kosolov, P.: Diffie-Hellman Key Exchange via REST.
https://medium.com/@razumovsky_r/diffie-hellman-key-exchange-via-rest-b7a91c9df7b1 (accessed on August 25,

2022), 2022.

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz, ch. 11; Ferguson, ch. 11 25 / 35

https://medium.com/@razumovsky_r/diffie-hellman-key-exchange-via-rest-b7a91c9df7b1

Diffie-Hellman key exchange III

Steps (G and P are assumed to be publicly known):
1 Alice generates a random group element a (out of scope)
2 Alice sends A = G a mod P to Bob
3 Bob generates a random group element b (out of scope)
4 Bob sends B = G b mod P to Alice
5 Alice computes the shared secret/key s = Ba = (G b)a = G a·b

6 Bob computes the shared secret/key s = Ab = (G a)b = G a·b

Eve can see A = G a and B = Gb, but cannot compute s = G a·b from
this information alone (Diffie-Hellman assumption)

There may be other ways to compute s → stronger security definition
through decisional Diffie-Hellman problem (out of scope)

A man in the middle could still intercept communication, so
additional protections are needed (without details)

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz, ch. 11; Ferguson, ch. 11 26 / 35

Practical concerns

Forward secrecy

If an attacker finds the shared secret somehow, he can only read the
current, but not previous or future conversations between Alice and Bob
Requires that Alice and Bob generate/exchange new keys every time
they communicate (also called Diffie-Hellman Ephemeral)

How to choose good generators and groups

For Z∗
n∈P, the discrete logarithm is easy to compute in some cases

→ Use “safe” primes and certain large subgroups (out of scope)
Additional checks for vulnerable g and n (out of scope)

How to choose the size of the modulus n

Symmetric key sizes cannot be compared to (sub)group sizes
Recommendations at https://www.keylength.com/en/compare/

[2] IBM Corporation: Variants of Diffie-Hellman.
https://www.ibm.com/docs/en/zvse/6.2?topic=SSB27H_6.2.0/fa2ti_openssl_variants_of_diffie_hellman.html

(accessed on August 25, 2022), 2021.

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz,c.9,11; Ferguson,c.11,14; [2] 27 / 35

https://www.keylength.com/en/compare/
https://www.ibm.com/docs/en/zvse/6.2?topic=SSB27H_6.2.0/fa2ti_openssl_variants_of_diffie_hellman.html

Overview of cryptographic hashes I

A hash function H(m)

creates a fingerprint/digest/hash of a given message m
maps a variable-sized input to a fixed-sized output
is “one-way”, i.e., computationally infeasible to invert

Applications

Message integrity: Detect tampering
Digital signatures (later): Sign hash instead of full message
Pseudo-random number generation (out of scope)

Example hash function: Secure Hash Algorithm 2

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz, ch. 6; Ferguson, ch. 5 28 / 35

Overview of cryptographic hashes II

The same input always gives the same output, i.e.,
H(m1) = H(m2) if m1 = m2

Different inputs ideally give different outputs (more later)

Source: Manning Publications: Cryptographic Hashes and Bitcoin.
https://freecontent.manning.com/cryptographic-hashes-and-bitcoin/ (accessed on August 23, 2022), 2017.

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz, ch. 6; Ferguson, ch. 5 29 / 35

https://freecontent.manning.com/cryptographic-hashes-and-bitcoin/

One-way functions

A one-way function

is easy to compute
is hard to invert
relies on the existence of a problem which is easy to compute one way,
but hard to compute the other way around

Example: Factoring as a one-way function

Given arbitrary and large p, q ∈ P, multiply and output N = p · q
Inverse problem: given an arbitrary and large N which is the product of
two primes, factor p and q such that p · q = N
Assumes the factoring assumption is true (multiplying is
computationally “easy”, but factoring is computationally “hard”)

One-way functions alone are insufficient to build robust hash functions

Practical hash functions do not base their security on provable
reduction to one-way functions, but on heuristics

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz (2021), ch. 7 30 / 35

Secure Hash Algorithm 2 I

Secure Hash Algorithm 2 (SHA-2)

Standardized (2001) after SHA-1 weaknesses
Widely used and supported
Supports 224-, 256-, 384- and 512-bit digests (for recommended digest
sizes see https://www.keylength.com/en/compare/)
Known attacks on simplified variations of SHA-2, but no better way
known to break full SHA-2 than generic attacks affecting all
cryptographic hashes (later)

Example: SHA-512 (SHA-2 with 512-bit digests)

80 rounds of updating 32-bit internal state variables A-H with 64-bit
words W based on the input message (simplified)
Automatic padding for messages whose length is not an integer
multiple of 64 bits

[3] Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family. In:
FSE 2012: Fast Software Encryption, 2012.

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz, ch. 7; Ferguson, ch. 5; [3] 31 / 35

https://www.keylength.com/en/compare/

Secure Hash Algorithm 2 II

Note: The red plus denotes 64-bit addition, the blue function blocks
perform logical and bit-shift operations detailed in the image source

Source: kockmeyer: A schematic that shows the SHA-2 algorithm.
https://commons.wikimedia.org/wiki/File:SHA-2.svg#/media/File:SHA-2.svg (accessed on August 23, 2022), 2007.

[3] Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family. In:
FSE 2012: Fast Software Encryption, 2012.

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography see [3] above 32 / 35

https://commons.wikimedia.org/wiki/File:SHA-2.svg#/media/File:SHA-2.svg

Attacks on cryptographic hashes – Introduction

Basic definitions:

Collision: Two inputs (messages) which give the same output (hash):
H(m1) = H(m2) if m1 ̸= m2

Collision resistance: It is computationally infeasible to find collisions

Collisions must happen when allowing arbitrarily-sized inputs with a
fixed-sized output (pigeon-hole principle)

→ Weaker security levels in practice:

Second-preimage resistance: Given a message m, it is infeasible to find
an m′ ̸= m such that H(m′) = H(m)
Preimage resistance: Given a hash h = H(m), it is infeasible to find an
m′ such that H(m′) = h

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz, ch. 6; Ferguson, ch. 5 33 / 35

Attacks on cryptographic hashes – Overview

Brute-force attack ((second-)preimage attack)

Try to find the preimage m or another m′ such that
H(m) = H(m′) =: h
Generate messages m1,m2, . . .
For n-bit hashes, the probability of any mi being hashed to h is 1

2n

→ 2n attempts necessary

Birthday attack (collision attack)

Try to find two preimages m ̸= m′ such that H(m) = H(m′)
Generate distinct messages m1,m2, . . . uniformly at random
For n-bit hashes, the probability of any two mi and mj (i ̸= j) being
hashed to the same output is determined by the Birthday problem

→ ≈ 2
n
2 attempts necessary

Length extensions (out of scope)

Partial-message attack (out of scope)

...

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Katz, ch. 6; Ferguson, ch. 5 34 / 35

Thank you for your attention!

Questions?

Andreas Unterweger (Salzburg UAS) Secret Key Cryptography Winter term 2023/24 35 / 35

	Introduction
	Recap
	Overview

	The Advanced Encryption Standard
	Overview
	Main algorithm
	Plug-in: Substitution-permutation networks
	Modes of operation
	Practical concerns

	Key exchange
	Overview
	Plug-in: Modular arithmetic
	Plug-in: Multiplicative groups
	Diffie-Hellman key exchange
	Practical concerns

	Cryptographic hashes
	Overview
	One-way functions
	Secure Hash Algorithm 2
	Attacks

	End

