Secret Key Cryptography
 Cryptography (lecture portion)

Andreas Unterweger

School of ITS
Salzburg UAS

Winter term 2023/24

Recap

- Traditional naming of actors
- Alice
- Bob
- Eve
- Terms
- Plaintext (further: chosen-plaintext attack)
- Ciphertext (further: chosen-ciphertext attack)
- Key
- Encryption (function)
- Decryption (function)
- Types of ciphers
- Symmetric vs. asymmetric cryptography
- Stream vs. block ciphers

Overview of secret key cryptography

- Symmetric cryptography: Key is kept secret/private
- Perfect security (Vernam) requires keys as long as the message
\rightarrow Impractical (shorter keys desired)
\rightarrow Practical solution: Approaches which are not perfectly secure, but only computationally secure (weaker security guarantee)
- Computational security example: Cipher can be broken with a probability of $<10^{-30}$ in 200 years using the fastest available computer
- Computationally secure schemes rely on (difficulty) assumptions
- Focus topics:
- Example of a symmetric cipher: The Advanced Encryption Standard
- Key exchange
- Cryptographic hashes (for integrity)

Overview of AES

- The Advanced Encryption Standard (AES)
- Standardized as winner of a competition (2001)
- Widely used and supported
- Block cipher (128 bits) with a substitution-permutation network
- Supports 128-, 192- or 256-bit keys
- Known attacks on simplified variations of AES, but no better way known to break full AES than exhaustive/brute-force key search
- Recall: $2^{128} \approx 10^{38}$ possible keys is a lot
- Optimistic 10^{10} decryptions/s on a desktop computer: $10^{28} \mathrm{~s} \approx 10^{20}$ a!
- Optimistic 10^{20} decryptions/s on a computer cluster: $10^{18} \mathrm{~s} \approx 10^{10} \mathrm{a}$!

The AES algorithm I

- High-level overview of encryption:
- 4.4 byte state array initially equal to the input (block)
- Multiple rounds which change the state array
- Number of rounds depends on the key length (e.g., 14 for 256 bits)
- Each round: 4 stages (substitution-permutation network)
- Key influences state array in each round (without details)
- Final round has slightly different stages (without details)
- Decryption inverts encryption steps (simplified)
- Messages which are not a multiple of the block size long need to be padded (without details)

The AES algorithm II

- Stage 1: AddRoundKey
- Derive 128 -bit round key from key
- XOR state array with round key

Source: Matt Crypto: AddRoundKey operation for AES.
https://commons.wikimedia.org/wiki/File:AES-AddRoundKey.svg\#/media/File:AES-AddRoundKey.svg (accessed on August 23, 2022), 2006.

The AES algorithm III

- Stage 2: SubBytes
- Replace bytes based on a lookup table
- Lookup table is fixed for all bytes and rounds

Source: Matt Crypto: SubBytes operation for AES.
https://commons.wikimedia.org/wiki/File:AES-SubBytes.svg\#/media/File:AES-SubBytes.svg (accessed on August 23, 2022), 2006.

The AES algorithm IV

- Stage 3: ShiftRows
- Cyclical shift of bytes in rows of state array
- Different shift for each row

Source: Matt Crypto: ShiftRows operation for AES.
https://commons.wikimedia.org/wiki/File:AES-ShiftRows.svg\#/media/File:AES-ShiftRows.svg (accessed on August 23, 2022), 2006.

The AES algorithm V

- Stage 4: MixColumns
- Column-wise transformation (without details)
- Achieves diffusion together with stage 3

Source: Matt Crypto: MixColumns operation for AES.
https://commons.wikimedia.org/wiki/File:AES-MixColumns.svg\#/media/File:AES-MixColumns.svg (accessed on August 23, 2022), 2006.

Plug-in: Substitution-permutation networks I

- Multiple rounds of invertible substitution and permutation
- Implement the confusion-diffusion paradigm

Source: Ebrary.net: DES. https://ebrary.net/134519/computer_science/ (accessed on August 23, 2022), 2022.

Plug-in: Substitution-permutation networks II

- Confusion-diffusion paradigm
- Confusion: Permute all parts/bytes of a block separately
- Diffusion: Reorder bits to propagate changes to all parts of the output
- Repeated use of confusion and diffusion result in random-looking permutation overall (without details)
\rightarrow Avalanche effect: Small changes to the input result in large changes to the output (a single input bit should affect all output bits)
\rightarrow Changing one input bit is expected to flip 50% of the output bits
- Security depend on choices of substitutions and permutations as well as the number of rounds
- Networks/block ciphers by themselves are not secure against chosen-plaintext attacks (details in chapter 3 of Katz (2008))

Modes of operation: ECB

- ECB: Electronic code book mode
- Same plaintext always yields same ciphertext under same key \rightarrow identical plaintext blocks repeat in ciphertext \rightarrow not secure!

Ciphertext

Electronic Codebook (ECB) mode encryption
Source: WhiteTimberwolf: Encryption using the Electronic Code Block (ECB) mode.
https://commons.wikimedia.org/wiki/File:ECB_encryption.svg\#/media/Datei:ECB_encryption.svg (accessed on August 23, 2022), 2013.

Modes of operation: CBC I

- CBC: Cipher block chaining mode
- Ciphertexts from previous blocks affect ciphertext of current block
- Initialization vector (IV) must be chosen for first block

Cipher Block Chaining (CBC) mode encryption

Source: WhiteTimberwolf: Encryption using the Cipher Block Chaining (CBC) mode. https://commons.wikimedia.org/wiki/File:CBC_encryption.svg\#/media/File:CBC_encryption.svg (accessed on August 23, 2022), 2013.

Modes of operation: CBC II

- IV should be random and not be reused
- IV must be sent with the ciphertext for decryption
- Encryption and decryption cannot be parallelized

Cipher Block Chaining (CBC) mode decryption
Source: WhiteTimberwolf: Decryption using the Cipher Block Chaining (CBC) mode. https://commons.wikimedia.org/wiki/File:CBC_decryption.svg\#/media/File:CBC_decryption.svg (accessed on August 23, 2022), 2013.

Modes of operation: OFB

- OFB: Output feedback mode
- Only IV is input repeatedly into the block cipher, not the plaintext \rightarrow Plaintext is XOR-ed with the encrypted byte stream

Output Feedback (OFB) mode encryption

Source: WhiteTimberwolf: Encryption using the Output Feedback (OFB) mode.
https://commons.wikimedia.org/wiki/File:0FB_encryption.svg\#/media/File:OFB_encryption.svg (accessed on August 23, 2022), 2013.

Modes of operation: CTR

- CTR: Counter mode (different variations)
- Like OFB, but with incrementing counter (starts at random number)
- Parallelizable (like OFB) and secure against chosen-plaintext attack

Counter (CTR) mode encryption

Source: WhiteTimberwolf: Encryption using the Counter (CTR) mode.
https://commons.wikimedia.org/wiki/File:CTR_encryption_2.svg\#/media/File:CTR_encryption_2.svg (accessed on August 23, 2022), 2013.

Practical concerns

- Which key length is sufficient?
- Depends until when the ciphertext should be secure
- Depends on who you ask (professional recommendations)
- Comparison at https://www.keylength.com/en/compare/
- AES and the presented modes do not provide
- Integrity/authentication: Eve can change bits of the ciphertext without Bob noticing \rightarrow GCM (Galois/counter mode, without details) or additional integrity checks \rightarrow cryptographic hashes
- Security against chosen-ciphertext attacks without additional measures
- Security if they are used improperly, e.g., when IVs are reused

Key exchange

- Secret key cryptography requires a pre-shared key
\rightarrow How do Alice and Bob share a secret key?
- Physically (meeting, mailing etc.)
- Key distribution centers (requires trust)
... (other solutions which are impractical for transient communication)
- For multiple communicating parties
- Each pair of communicating parties needs their own key
\rightarrow Quadratic complexity (impractical for storage and management)
- Alternative: Diffie-Hellman key exchange

Plug-in: Modular arithmetic I

- For all $a, b, N \in \mathbb{N} \backslash\{0,1\}, a \equiv b(\bmod N)$ if $a \bmod N=b \bmod N$
- a and b are congruent modulo N when their remainders upon division by N are equal, e.g., $15 \equiv 3(\bmod 12) ; 123 \equiv 35 \equiv 2(\bmod 11)$

Source: Time Clock Experts.com: Pyramid 13" Analog STD 12/24-Hr Clock Battery Operated (For 915MHz). https://www.timeclockexperts.com/Pyramid-13-915MHz-9A13D-Battery-Operated-p/s9a3acgbxb.htm (accessed on August 25, 2022), 2006.

Plug-in: Modular arithmetic II

- Adding in a modulus is like adding on a clock - examples: $11+3 \equiv 14 \equiv 2(\bmod 12) ; 123+35 \equiv 158 \equiv 4(\bmod 11)$
- Most standard rules of arithmetic still work in modular arithmetic:
- Addition: If $x \equiv x^{\prime}(\bmod N)$ and $y \equiv y^{\prime}(\bmod N)$, then

$$
x+y \equiv x^{\prime}+y^{\prime}(\bmod N)
$$

- Subtraction (analogously)
- Multiplication: If $x \equiv x^{\prime}(\bmod N)$ and $y \equiv y^{\prime}(\bmod N)$, then $x \cdot y \equiv x^{\prime} \cdot y^{\prime}(\bmod N)$
- Division does not work in general
- Invertibility (not always possible):
- Define a^{-1} such that $a \cdot a^{-1} \equiv 1(\bmod N)$
- Example: $a=3, a^{-1}=4, N=11$; counter-example: $a=3, N=12$
- Requires that $\operatorname{gcd}(a, N)=1$ (details in Katz (2008))

Plug-in: Multiplicative groups I

- A multiplicative group is a set S which
- is closed under multiplication (multiplying yields an element of the set)
- has an identity (element) e such that $\forall s \in S: e \cdot s=s$
- has an inverse for every element
- Counter-examples:
- \{2\} does not fulfill any of the criteria
- \mathbb{R} : Zero is not invertible
- $\{1, j,-j\}$ is not closed (e.g., $j \cdot j=-1$)
- Simple example: $\mathbb{R} \backslash\{0\}$ is a multiplicative group
- $\mathbb{R} \backslash\{0\}$ is closed
- The identity element is 1
- Every element has an inverse: $e^{-1}=\frac{1}{e}$
- Multiplications may also be performed in a modulus

Plug-in: Multiplicative groups II

Multiplication tables of the groups $\mathbb{Z}_{5}^{*}=\{1,2,3,4\}$ modulo 5 (left) and $\{3,6,9,12\}$ modulo 5 (right):

\times	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

\times	3	6	9	12
3	9	3	12	6
6	3	6	9	12
9	12	9	6	3
12	6	12	3	9

Sources: Purwanto, Hidayah, I. N., and Hasanah, D.: Results and Problems on Constructing Multiplicative Groups in Modular Arithmetic. http://fmipa.um.ac.id/wp-content/uploads/2019/10/MATEMATIKA_PURWANTO-Rev-14-23.pdf (accessed on August 25, 2022), 2019.
[1] Purwanto, Hidayah, I. N., and Hasanah, D.: Results and Problems on Constructing Multiplicative Groups in Modular Arithmetic. http://fmipa.um.ac.id/wp-content/uploads/2019/10/MATEMATIKA_PURWANTO-Rev-14-23.pdf (accessed on August 25, 2022), 2019.

Plug-in: Multiplicative groups III

- Exponentiation for groups (analogous to "regular" exponentiation)
- Defined as repeated multiplication: $g^{m}:=\underbrace{g \cdot g \cdots \cdots g}_{m \text { times }}$
- $g^{0}:=1$ (where 1 needs to be an element of the group)
- Familiar rules apply, e.g., $\left(g^{a}\right)^{b}=g^{a \cdot b}$
- Special groups $\mathbb{Z}_{n}^{*}:=\{1,2, \cdots, n-1\}$ with multiplication modulo $n \in \mathbb{P}$ (restricted for now, general definition later)
- n must be prime (otherwise some elements are not invertible)
- Exponentiating to base $g \in \mathbb{Z}_{n}^{*}$ (cyclically) generates subsets/subgroups
- Example: $g=3$ for \mathbb{Z}_{5}^{*} generates $\{1,3,4,2\}=\mathbb{Z}_{n}^{*}$
- Smaller example: $g=4$ for \mathbb{Z}_{5}^{*} generates the subgroup $\{1,4\}$

Note: For proofs of the above claims see Katz (2021)

Diffie-Hellman key exchange I

- Discrete logarithm (analogous to "regular" logarithm)
- Inverse operation of exponentiation in a modulus
- Definition: $\log _{g}(h)=x$ if $g^{x} \equiv h \bmod n$ in \mathbb{Z}_{n}^{*}
- Example: $\log _{3}(4) \equiv 2 \bmod 5$
- For some g in cyclic groups, $\log _{g}$ is easy to compute
- For some $g, \log _{g}$ is believed to be hard to compute
- Diffie-Hellman assumption (computational Diffie-Hellman problem):
- Task: Given $X:=g^{x}$ and $Y:=g^{y}$ with known generator g and modulus n, determine $g^{x \cdot y}=\left(g^{x}\right)^{y}=\left(g^{y}\right)^{x}$
- If $\log _{g}$ is easy to compute for g in $\mathbb{Z}_{n}^{*}, g^{x \cdot y}$ is easy to compute as $X^{\log _{g}(Y)}=\left(g^{x}\right)^{y}=g^{x \cdot y}$
- If $\log _{g}$ is hard to compute for g in $\mathbb{Z}_{n}^{*}, g^{x \cdot y}$ is hard to compute
\rightarrow Use this assumption to build a key exchange protocol

Diffie-Hellman key exchange II

Source: Kosolov, P.: Diffie-Hellman Key Exchange via REST.
https://medium.com/@razumovsky_r/diffie-hellman-key-exchange-via-rest-b7a91c9df7b1 (accessed on August 25, 2022), 2022.

Diffie-Hellman key exchange III

- Steps (G and P are assumed to be publicly known):
(1) Alice generates a random group element a (out of scope)
(2) Alice sends $A=G^{a} \bmod P$ to Bob
(3) Bob generates a random group element b (out of scope)
(9) Bob sends $B=G^{b} \bmod P$ to Alice
(5) Alice computes the shared secret/key $s=B^{a}=\left(G^{b}\right)^{a}=G^{a \cdot b}$
(0) Bob computes the shared secret/key $s=A^{b}=\left(G^{a}\right)^{b}=G^{a \cdot b}$
- Eve can see $A=G^{a}$ and $B=G^{b}$, but cannot compute $s=G^{a \cdot b}$ from this information alone (Diffie-Hellman assumption)
- There may be other ways to compute $s \rightarrow$ stronger security definition through decisional Diffie-Hellman problem (out of scope)
- A man in the middle could still intercept communication, so additional protections are needed (without details)

Practical concerns

- Forward secrecy
- If an attacker finds the shared secret somehow, he can only read the current, but not previous or future conversations between Alice and Bob
- Requires that Alice and Bob generate/exchange new keys every time they communicate (also called Diffie-Hellman Ephemeral)
- How to choose good generators and groups
- For $\mathbb{Z}_{n \in \mathbb{P}}^{*}$, the discrete logarithm is easy to compute in some cases
\rightarrow Use "safe" primes and certain large subgroups (out of scope)
- Additional checks for vulnerable g and n (out of scope)
- How to choose the size of the modulus n
- Symmetric key sizes cannot be compared to (sub)group sizes
- Recommendations at https://www.keylength.com/en/compare/
[2] IBM Corporation: Variants of Diffie-Hellman.
https://www.ibm.com/docs/en/zvse/6.2?topic=SSB27H_6.2.0/fa2ti_openssl_variants_of_diffie_hellman.html (accessed on August 25, 2022), 2021.

Overview of cryptographic hashes I

- A hash function $H(m)$
- creates a fingerprint/digest/hash of a given message m
- maps a variable-sized input to a fixed-sized output
- is "one-way", i.e., computationally infeasible to invert
- Applications
- Message integrity: Detect tampering
- Digital signatures (later): Sign hash instead of full message
- Pseudo-random number generation (out of scope)
- Example hash function: Secure Hash Algorithm 2

Overview of cryptographic hashes II

- The same input always gives the same output, i.e., $H\left(m_{1}\right)=H\left(m_{2}\right)$ if $m_{1}=m_{2}$
- Different inputs ideally give different outputs (more later)

Source: Manning Publications: Cryptographic Hashes and Bitcoin.
https://freecontent.manning.com/cryptographic-hashes-and-bitcoin/ (accessed on August 23, 2022), 2017.

One-way functions

- A one-way function
- is easy to compute
- is hard to invert
- relies on the existence of a problem which is easy to compute one way, but hard to compute the other way around
- Example: Factoring as a one-way function
- Given arbitrary and large $p, q \in \mathbb{P}$, multiply and output $N=p \cdot q$
- Inverse problem: given an arbitrary and large N which is the product of two primes, factor p and q such that $p \cdot q=N$
- Assumes the factoring assumption is true (multiplying is computationally "easy", but factoring is computationally "hard")
- One-way functions alone are insufficient to build robust hash functions
- Practical hash functions do not base their security on provable reduction to one-way functions, but on heuristics

Secure Hash Algorithm 21

- Secure Hash Algorithm 2 (SHA-2)
- Standardized (2001) after SHA-1 weaknesses
- Widely used and supported
- Supports 224-, 256-, 384- and 512-bit digests (for recommended digest sizes see https://www.keylength.com/en/compare/)
- Known attacks on simplified variations of SHA-2, but no better way known to break full SHA-2 than generic attacks affecting all cryptographic hashes (later)
- Example: SHA-512 (SHA-2 with 512-bit digests)
- 80 rounds of updating 32 -bit internal state variables A-H with 64-bit words W based on the input message (simplified)
- Automatic padding for messages whose length is not an integer multiple of 64 bits
[3] Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family. In: FSE 2012: Fast Software Encryption, 2012.

Secure Hash Algorithm 2 II

- Note: The red plus denotes 64-bit addition, the blue function blocks perform logical and bit-shift operations detailed in the image source

Source: kockmeyer: A schematic that shows the SHA-2 algorithm.
https://commons.wikimedia.org/wiki/File:SHA-2.svg\#/media/File:SHA-2.svg (accessed on August 23, 2022), 2007.
[3] Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family. In: FSE 2012: Fast Software Encryption, 2012.

Attacks on cryptographic hashes - Introduction

- Basic definitions:
- Collision: Two inputs (messages) which give the same output (hash): $H\left(m_{1}\right)=H\left(m_{2}\right)$ if $m_{1} \neq m_{2}$
- Collision resistance: It is computationally infeasible to find collisions
- Collisions must happen when allowing arbitrarily-sized inputs with a fixed-sized output (pigeon-hole principle)
\rightarrow Weaker security levels in practice:
- Second-preimage resistance: Given a message m, it is infeasible to find an $m^{\prime} \neq m$ such that $H\left(m^{\prime}\right)=H(m)$
- Preimage resistance: Given a hash $h=H(m)$, it is infeasible to find an m^{\prime} such that $H\left(m^{\prime}\right)=h$

Attacks on cryptographic hashes - Overview

- Brute-force attack ((second-)preimage attack)
- Try to find the preimage m or another m^{\prime} such that $H(m)=H\left(m^{\prime}\right)=: h$
- Generate messages m_{1}, m_{2}, \ldots
- For n-bit hashes, the probability of any m_{i} being hashed to h is $\frac{1}{2^{n}}$
$\rightarrow 2^{n}$ attempts necessary
- Birthday attack (collision attack)
- Try to find two preimages $m \neq m^{\prime}$ such that $H(m)=H\left(m^{\prime}\right)$
- Generate distinct messages m_{1}, m_{2}, \ldots uniformly at random
- For n-bit hashes, the probability of any two m_{i} and $m_{j}(i \neq j)$ being hashed to the same output is determined by the Birthday problem
$\rightarrow \approx 2^{\frac{n}{2}}$ attempts necessary
- Length extensions (out of scope)
- Partial-message attack (out of scope)

Thank you for your attention!

Questions?

